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Solution Methodology

This case was run using CFL3D, a multi-zone Reynolds-averaged Navier-Stokes code developed at NASA
Langley [1]. It solves the thin-layer form of the Navier-Stokes equations in each of the (selected) coordinate
directions. It can use 1-to-1, patched, or overset grids, and employs local time step scaling, grid sequencing,
and multigrid to accelerate convergence to steady state. In time-accurate mode, CFL3D has the option to
employ dual-time stepping with subiterations and multigrid, and it achieves second order temporal accuracy.

CFL3D is a finite volume method. It uses third-order upwind-biased spatial differencing on the con-
vective and pressure terms, and second-order differencing on the viscous terms; it is globally second-order
spatially accurate. The flux difference-splitting (FDS) method of Roe is employed to obtain fluxes at the
cell faces. It is advanced in time with an implicit three-factor approximate factorization method.

Model Description

For this test case, three different turbulence models were used. The first is the one-equation Spalart-Allmaras
model (SA) [2], the second is the two-equation shear-stress transport model of Menter (SST) [3, 4], and the
third is an explicit algebraic stress model (EASM-ko) in

�
-� form [5]. The first two models are both linear

eddy-viscosity models that make use of the Boussinesq eddy-viscosity hypothesis, whereas the EASM-ko is
a nonlinear model. The equations describing these three models can be found in their respective references.

In CFL3D, the models are implemented uncoupled from the mean-flow equations. They are solved using
a three-factor implicit approximate factorization approach. The advection terms are discretized with first-
order upwind differencing. The production source term is solved explicitly, while the advection, destruction,
and diffusion terms are treated implicitly. For EASM-ko, the nonlinear terms are added to the Navier-Stokes
equations explicitly.

Implementation and Case Specific Details

Three flow conditions are computed over the hump model: (1) no flow control, (2) steady suction flow
control, and (3) oscillatory synthetic jet flow control. The control is applied near �������
	����� on the back
side of the hump, near where the flow separates in the un-controlled state. The freestream Mach number
is � ��	���� , and the Reynolds number is approximately Re = 936,000 per hump chordlength. For the
oscillatory case, the oscillation frequency is 138.5 Hz.

All computations performed for this case were 2-D. The grid used was the supplied 2-D structured grid
number 1 (which contains 4-zones connected in a 1-to-1 fashion, and approximately 210,000 grid points),
as well as a medium-level grid made from the fine grid by extracting every-other point in each coordinate
direction (2-D structured grid number 2). The SA model was solved on both the fine and medium grids,
whereas the SST and EASM-ko models were only solved on the medium grid. For the oscillatory case, only
the SA model on the fine grid was used.

For the no-flow-control and steady suction cases, CFL3D was run in steady-state mode, utilizing local
time-stepping to accelerate convergence. For the oscillatory case, the time step chosen yielded 360 time
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Figure 1: Convergence of subiteration residual during time-accurate oscillatory computation, SA model,
fine grid.

steps per cycle of the forcing frequency, and 5 subiterations were employed per time step. For this case, this
number of subiterations was enough to reduce the ��� -norm of the subiteration density residual by about 2
orders of magnitude. See Fig. 1, which shows subiteration residual over the course of 7 time steps (with 5
subiterations per time step) during part of the unsteady cycle.

The boundary conditions were as follows. At the floor and hump surfaces, as well as at the side walls
inside the cavity, solid wall adiabatic boundary conditions were applied. At the front of the grid, which
extended to ��������� ��!�"�# , far-field Riemann-type boundary conditions were applied. At the downstream
boundary (at �����$�&%�!(' ) the pressure was set at )*�+)�,.-0/1�2'3!�#�#�#4%65 , and all other quantities were extrapolated
from the interior of the domain. This back pressure was determined via trial and error, to achieve approxi-
mately the correct inflow conditions. At the bottom of the cavity, different boundary conditions were applied
depending on the case. For the no-flow-control case, this wall was treated as an inviscid wall. For the steady
suction case, the boundary condition set the velocity components as follows:

7 �8' 9:�<;.=�9�>@?.-BAB�C= (1)

and ;.=D9E>F?G-HA was chosen in order to achieve the equivalent of a mass flow of 0.01518 kg/s through a 23-inch
span. The value used turned out to be ;.=D9I> ?.-BA �J�E!�'�'�KML4%ONC= ,.-0/QP�,.-0/ , where P4,.-0/ is the reference speed of
sound. For the oscillatory flow case, the boundary condition set the velocity components as follows:

7 �2' 9R�TS.;.=D9I>@UWVYX+�4=�ZQ�+[4\O;0L�]_^a`b> (2)

where ^ is the frequency and ` is the time, and ;.=�9�> UWVYX was chosen in order to achieve a maximum velocity
magnitude near to the target of approximately 26.6 m/s out of the slot during the cycle. Fig. 2 shows the
velocity magnitude at a position near the center of the slot exit as a function of nondimensional time, on a
line even with the hump surface, over the course of one cycle of oscillation. The value of ;.=D9E>cUWVYX used to
achieve this condition was ;.=D9I>cUWVYX��<'3!�'�'�K+=6,.-0/ P ,G-d/ . Along with the above boundary conditions given by
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Figure 2: Velocity magnitude at the slot exit for oscillatory case, SA model, fine grid.

Eqs. 1 and 2, the density and pressure at the bottom of the cavity are extrapolated from the interior of the
domain.

The top tunnel wall was treated as an inviscid wall for all of the computations submitted to the workshop.
However, the effect of making the top wall a viscous wall was also investigated (using a different grid with
appropriate finer normal spacing near the top wall). Resulting surface pressure coefficients are shown in
Fig. 3. Using viscous top wall lowers the peak egf levels over the center of the hump, in better agreement
with experiment. However, the effect does not fully account for the difference between CFD and experiment.
Also, the viscous upper wall does not impact the egf levels in the separated region to any significant degree.

As a nonlinear model, EASM-ko can do a better job predicting the turbulent normal stresses than linear
models. This can be seen in Fig. 4, which shows results predicted by the three models at h*i�jlk�m n�o�p+q .
The linear models show no perceptible difference between r*str3s and u�svu�s , whereas EASM-ko does predict a
normal stress difference. The r s r s from EASM-ko is in better agreement with the experiment, although its
peak near the wall is still too low. There were no measurements of u s u s .

Examples of the effects of grid and turbulence model can be seen in Fig. 5. This figure shows streamwise
velocity profiles in the separated region at h*i�j�kxw�o(y for the suction case, using SA on both the fine and
medium grids, and using SST and EASM-ko on the medium grid. There is essentially no difference between
the SA results on the fine and medium grids, and the two-equation models both predict a qualitatively
different profile than SA at this location.
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Figure 3: Surface pressure coefficients for no-flow-control case, SA model, medium grid.

Figure 4: Predicted turbulent normal stresses at z*{�|$}T~ ������� , medium grid.
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Figure 5: Velocity profiles at �������8����� for the suction case.
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CASE 3: TWO-DIMENSIONAL SIMULATION OF FLOW OVER A 
HUMP MODEL WITH MENTER’S SST MODEL 
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Introduction 
 
Flow control of separation is an ongoing topic of investigation. This investigation of the 
phenomenon is based on our CFD experience working on flow control approaches such as 
morphing wings[1] and blowing and suction jets [2,3]. The latter studies were performed with the 
CFD code GHOST. It is this code and its techniques that we have applied to solve the current 
flow control problem. 
 
Solution Methodology 
 
All present computations were performed with the CFD code, GHOST. GHOST is an in-house 
CFD code developed at University of Kentucky by P. G. Huang.  The code is based on a finite 
volume structured formulation with chimera overset grids.  The QUICK and TVD schemes are 
applied to discretize the convective terms in the momentum and turbulence equations, 
respectively; the central difference scheme is used for the diffusive terms and the second order 
upwind time discretization is employed for the temporal terms. This code has been tested 
extensively and is routinely used for turbulence model validation [4,5,6]. The turbulence model 
used in the present computation is Menter's SST two equation model [7], which provides 
excellent predictive capability for flows with separation [8]. The multi-block and chimera 
features of the code allow the use of fine gird patches near the jet entrance and in regions of 
highly active flow. The code also employs MPI parallelization to allow different computational 
zones to be solved on different processors. The computations were performed on multiple 
commodity PC clusters housed with our research group at the University of Kentucky. 
 
Model Description 
 
The turbulence model used is Menter’s SST two equation model[7]. 
 
Implementation and case specific details 
 
Grid #1 (Dense grid) and Grid #2 (Coarse grid) provided on the workshop website were used for 
the computation.  

Specifying the boundary conditions proved to be a key question in this case. The 
upstream portion of the grid until x/c = -2.14 was removed so that the measured u velocity profile 
and streamwise turbulent intensity values were given as the inlet boundary condition. Several 
boundary conditions such as inviscid wall, freestream, and no-slip (viscous) wall were tested for 
the upper and the bottom boundary of the slot cavity. The best results were obtained for the 
boundary condition of a viscous wall on top and a viscous wall at the bottom of the suction cavity 
for the no flow case (Figure [1]). For steady suction cases, the boundaries remained the same 
except the bottom cavity boundary had a fixed velocity producing the workshop-provided mass 
flow rate.   
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A simulation with steady suction and a simulation with no suction were performed on 
each grid. In each case, a steady-state and a time-dependent simulation were calculated. The 
steady-state runs were done for a sufficient number of iterations until the flow data has converged 
to a constant solution. Turbulence statistics were obtained from the time-dependent simulation; 
all other data was taken from the steady-state results. Since the time-dependent simulations were 
performed only to obtain turbulence data, we used only a single timestep value for each case, 
corresponding to 0.001 seconds. 
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                Figure 1: Boundary conditions used for the computation. All walls are viscous. 
                               
 
References: 
 

1. Munday, D., Jacob, J.D., Hauser, T., and Huang, P.G., “Experimental and Numerical 
Investigation of Aerodynamic Flow Control Using Oscillating Adaptive Surfaces,” AIAA 
2001-2837, June. 2002. 

2. L. Huang, P.G. Huang, R.P. LeBeau and Th. Hauser, “Numerical Study of Blowing and 
Suction Control Mechanism on NACA0012 Airfoil”, Journal of Aircraft, (accepted for 
publication October, 2003). 

3. L. Huang, G. Huang, R. LeBeau, Th. Hauser, “Optimization of Blowing and Suction 
Cotrol on NACA0012 Airfoil Using Genetic Algorithm”,AIAA 2004-0225 42nd 
Aerospace Sciences Meeting and Exhibit, Jan.2004 

4. Y. B. Suzen, P. G. Huang, "Numerical Simulation of Wake Passing on Turbine 
Cascades", AIAA-2003-1256, 41st Aerospace Sciences Meeting and Exhibit, Jan. 2003 

5. Y. B. Suzen, P.G. Huang, R. J. Volino, T. C. Corke, F. O. Thomas, J. Huang, J. P. Lake 
and P. I. King, “A Comprehensive CFD Study of Transitional Flows In Low-Pressure 
Turbines Under a Wide Range of Operation Conditions”, 33rd AIAA Fluid Dynamic 
Conference, AIAA 2003-3591, Jun. 2003 

6. Y. B. Suzen and P. G. Huang, “Predictions of Separated and Transitional Boundary 
Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport 
Equation”, Journal of Turbomachinery, Vol. 125, No.3, Jul. 2003, pp. 455-464 

7. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models For Engineering 
Applications”, AIAA Journal, Vol. 32, No. 8, Aug. 1994, pp. 1598-1605 

3.9.2



8. Bardina, J. E., P. G. Huang and T. J. Coakley, “Turbulence Modeling Validation, Testing 
and Development”, NASA TM-110446, Apr. 1997 

 

3.9.3



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CASE 3:  Two-Dimensional Flow Control Analysis on the Hump Model 
 

Sally A. Viken 
 
Flow Physics and Control Branch, NASA Langley Research Center, Hampton, VA 23681-2199 
 
Introduction 
 

Computational analyses have been conducted on the Wall-mounted Glauert-Goldschmied 
type body (“hump” model) with the Full Unstructured Navier-Stokes 2-D (FUN2D) flow solver 
developed at NASA LaRC.  This investigation uses the time-accurate Reynolds-averaged Navier-
Stokes (RANS) approach to predict aerodynamic performance of the active flow control 
experimental database for the hump model.  The workshop is designed to assess the current 
capabilities of different classes of turbulent flow solution methodologies, such as RANS, to 
predict flow fields induced by synthetic jets and separation control geometries.  The hump model 
being studied is geometrically similar to that previously tested both experimentally and 
computationally at NASA LaRC [ref. 1 and 2, respectively]. 
 
Solution Methodology 

 
The FUN2D flow solver is a node based, implicit, upwind flow solver used for 

computing flows around airfoil configurations discretized with an unstructured grid [ref. 3].  The 
governing equations (provided below) are the time-dependent RANS equations in conservation-
law form, which are integrated in time to obtain a steady state solution.  The inviscid fluxes are 
obtained on the faces of each control volume by using the flux-difference-splitting  (FDS) 
technique of Roe [ref. 4].  A node-based algorithm is used in which the variables are stored at the 
vertices of the mesh and the equations are solved on non-overlapping control volumes 
surrounding each node.  The viscous terms are evaluated with a finite-volume formulation that 
results in a central-difference-type scheme.  The Spalart-Allmaras (SA) turbulence model is used 
in this investigation and all computations assume fully turbulent flow [ref. 5].  

A two level iteration is used to achieve convergence of the discrete algebraic equations at 
each time-step.  The outer iteration is a modified Newton method and employs a first-order Van 
Leer Jacobian (LHS) [ref. 6] driving the second-order residual vector (RHS).  The inner iteration 
employs a red-black Gauss Siedel point-implicit algorithm to solve the equations at each step of 
the outer iteration.  Twenty inner sub-iterations were used in all cases in this study.  The SA 
turbulence model equations are weakly coupled to the hydrodynamic equation via the outer loop 
iteration.   

For steady state computations, the solution is driven to convergence using an Euler 
implicit advancement in pseudo-time.  For time-dependent computations, the solution is 
discretized in physical time with the second-order backwards differentiation formulae (BDF), 
while pseudo-time iterations are again employed to relax the equations [ref. 2, 7].  The linear 
system of equations resulting from either formulation is iteratively solved with a point-implicit 
procedure. 

 
Governing Equations 

The governing equations, the Reynolds-averaged Navier-Stokes equations, are written in 
conservative-law form to relate the rate of change of mass, momentum, and energy in a control 
volume of area A to the fluxes of these quantities through surface of the control volume.  The 
non-dimensional equations presented in vector form are as follows: 

A ⋅
∂

∂

Q
 t

 + Fi

∂Ω

⋅ ˆ n  dl  - Fv

∂Ω

⋅ ˆ n  dl= 0 
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where ˆ n  is the outward-pointing unit normal to the surface of the control volume ∂Ω.  The 
solution vector Q containing the dependent variables is defined by 
 

Q =  
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The inviscid and viscous flux vectors through the surface of the control volume ∂Ω, defined as F i 
and F v, respectively, are given by 
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The normal and shear stress terms and heat conduction terms are defined by 
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The equation of state for a perfect gas is used to define the pressure p  
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p = γ −1( ) E - ρ
u2 + v 2( )
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and the laminar viscosity µ is determined through Sutherland’s law 
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1+ C*( )
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+ C* 
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where C* = 
198.6
536.4

is Sutherland’s constant divided by a free stream reference temperature which 

is defined to be 536.4° Rankine for Case Study #3. 
The eddy viscosity, µt, is obtained by the turbulence closure model developed by Spalart 

and Allmaras [ref 5]. Again, the turbulent viscosity equation is solved separately from the flow 
equations at each time step, using the Euler implicit time-stepping scheme, resulting in a loosely 
coupled solution process. 
 
 
Implementation and Case Specific Details 
 
Unstructured Grids 

Two-dimensional unstructured grids were generated for Case Study #3 analyses and 
provided at the website.  The coordinates used for the unstructured grids were the 2-D non-
dimensionalized theoretical model coordinates along with the tunnel geometry.  These grids were 
generated with advancing front type point placement with iterative local re-meshing for grid 
quality improvement [ref. 8,9].  For the internal flow analyses conducted with the FUN2D code 
that will be presented at the workshop, the website unstructured Grid #1 and #2 were used. The 
forward extent of these grids is longer than the actual splitter plate length used in the wind tunnel 
experiment.  These grids ran from –6.39c ahead of the leading edge of the model to 4.0c behind 
the leading edge of the model.  This grid extent of -6.39c was chosen because it was found in 
preliminary CFD tests to yield a "run" long enough so that the computed boundary layer 
thickness approximately matched that of experimental data at x/c = -2.14 [figure 1].  The grid 
height is y/c = 0.90905, which corresponds with the actual height of 15.032 inches from the 
splitter plate to the ceiling of the tunnel test section.  In addition, these grids were generated with 
the internal cavity modeled.  The fine grid (website unstructured Grid #1) has 123703 nodes, 
368476 faces, and 247404 cells. The minimum spacing at the viscous walls was set to be 
approximately 8.e-06.  This minimum spacing yields a y+ value less than 1. The coarse grid 
(website unstructured Grid #2) has 57152 nodes, 169689 faces, and 114302 cells.  The minimum 
spacing at the viscous walls was set to be approximately 1.6e-05. The upper grid boundary (test 
section ceiling) was set up to use inviscid-type grid spacing. 

Initial calculations were conducted on the hump model using the grids described above for 
the baseline no-flow control condition.  The experimental data for the baseline case showed a 
discontinuity in the Cp distribution at x/c = 0.48, which was not observed in the computational 
results.  An unstructured grid was generated using the Quality Assurance (QA) coordinates 
provided at the website followed by further computational analyses.  This grid has 122790 nodes, 
365737 faces, and  245578 cells, with the minimum wall spacing yielding a y+ value less than 1.  
Computational results for the baseline no-flow condition analyzed with the QA coordinate grid 
and theoretical coordinate grid are compared with the experimental data [figure 2].  Computations 
with the QA grid show the sensitivity of the solution to the discontinuity in the hump model 
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surface geometry similar to that found experimentally.   Outside of this localized discontinuity in 
the Cp distribution, the CFD solutions obtained with the QA coordinate grid and the theoretical 
coordinate grid compared well together.  Grid studies were also conducted with the upper grid 
boundary defined to have viscous wall spacing, however only a slight increase in the flow 
acceleration over the hump model was achieved.  All computations that will be presented at the 
workshop were run using the grids generated with the theoretical coordinates (unstructured Grids 
#1 and #2) that have inviscid-type grid spacing on the upper grid boundary. 

  
Boundary Conditions 

The boundary conditions on the hump model, the internal cavity walls, and the tunnel 
floor corresponded to no-slip between the fluid and the solid boundary at their interface, with a 
constant temperature wall that was set to the adiabatic wall temperature Taw. The tunnel ceiling 
was treated as an inviscid surface.  The internal "actuator" boundary at the bottom of the hump 
cavity was also treated as an inviscid surface for the baseline cases with no control.  For the 
control cases, the "actuator" boundary condition corresponded to ρV(ξ, η = 0, t) = 
Amplitude*f(ξ)*cos (ωt) where f(ξ) = 1 (tophat distribution). The mass flux through the 
“actuator” boundary of the internal cavity was adjusted to obtain a peak velocity near 26.6 m/sec 
at the slot exit during the blowing part of the cycle [(ρV)max = 0.001(ρrefaref) was used to obtain 
this condition].  For inflow conditions, temperature was also specified on the "actuator" boundary 
from the experimental data.  To obtain the boundary conditions at the tunnel inlet, the flow was 
assumed to be both inviscid and isentropic in this region so that quantities for the computation of 
the flux along the inflow boundary were obtained from two locally 1-D Riemann invariants.  The 
Riemann invariants were considered constant along characteristics defined normal to the inflow 
boundary.  At the downstream boundary, a back pressure of 0.99947 times reference pressure was 
specified in order to approximate the upstream conditions at the tunnel inlet. 
 
Time-Step 
The baseline and steady suction cases were run non-time-accurate, and achieved steady state 
convergence.  The oscillatory suction/blowing case was run time-accurately using the second-
order accurate Backward Differentiation Formulae (BDF) scheme. The assumption was made that 
the excitation frequency introduced at the “actuator” boundary was a perfect sine wave. The 
computational oscillatory cases were run time-accurately at least 20 shedding cycles to set up the 
flow field and then the Cp’s were averaged over 20 cycles.   
 
Test Conditions 

Computational flow analyses were conducted on the hump model for M∞ = 0.1, at Re = 
936000. The two required test conditions for Case Study #3 were conducted along with the 
optional condition; the no-flow through the span slot, the suction case with suction rate of 
0.01518 kg/sec through the slot, and the zero-net-mass-flux oscillatory suction/blowing case 
(frequency = 138.5 Hz, and peak velocity out of slot during blowing part of cycle = 26.6 m/s).  
Only two-dimensional computations were performed for these studies. 

An example of the grid density effects are shown in figure 3, where the streamwise 
velocity profiles in the separated flow region at x/c = 0.8 for the suction case can be observed.  
The profiles for the fine and coarse level grids show that the grids are sufficiently resolved for the 
case analyzed. 
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Figure 1.  Velocity profile at x/c = -2.14 for 
baseline case (M∞ = 0.1; Re = 936000). 

Figure 3. Velocity profiles at x/c = 0.8 for 
the suction case (M∞ = 0.1; Re = 936000). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Baseline computational results  
versus experimental data (M∞ = 0.1; Re =  
936000). 
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Case 3: Separated Flows—An Assessment of the Predictive Capability of Five 
Common Turbulence Models

R.E. Spall, W.F. Phillips, and N.R. Alley
Department of Mechanical and Aerospace Engineering

Utah State University, Logan, UT 84322-4130

Introduction
The results presented herein were generated using the commercial CFD solver Fluent, which
makes available to the user a relatively large number of turbulence model options. Fluent is
widely used in both industry and academia, and it was of interest to the authors to assess the appli-
cability of the available models in predicting separated flows. Our interest is also derived, in part,
from our use of the code in the design of high lift, unmanned aerial vehicles (UAV’s) in which the
ability to predict flow separation is crucial.

Solution Methodology
The results were computed using the commercial CFD solver Fluent (version 6.18). Fluent
employs a pressure-based finite volume solution procedure to solve the governing equations on
unstructured grids. Pressure-velocity coupling was accomplished using the SIMPLEC procedure.
Second-order central differencing was used for the viscous terms in the transport equations. Inter-
polation to cell faces for the convection terms was performed using a third-order QUICK scheme.
In all cases, a steady, two-dimensional formulation was employed. Solutions obtained using a seg-
regated solver were considered converged when residuals for each of the equations (based on an
L2 norm) were reduced by a minimum of five orders of magnitude. Additional iterations were
then performed to confirm iterative convergence.

Model Description
Five different turbulence models available in the commercial CFD solver Fluent were used to
solve test case 3. These models included 1) , 2) , 3) Reynolds stress transport, 4) Spal-
art-Almaras, and 5) shear stress transport (SST). In all cases, the near wall mesh within the chan-
nel region along the lower wall was sufficiently fine so that wall functions were never
implemented. A brief description of each model appears below, with an emphasis on describing
methodology that often varies within each class of model.

1) The  model

The standard  model of Launder and Spalding [1] was employed, with low-Reynolds num-
ber modifications for the near-wall modeling, which combine a two-layer model with wall func-
tions. In the present work, the near wall mesh was fine enough to resolve the viscous sublayer;
consequently the two-layer model was used and wall functions were never implemented. In par-

ticular, if  (where ) the one-equation model of Wolfstein [2] is employed.

k ε– k ω–

k ε–

k ε–

Rey Rey
*< Rey

* 200=
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In this region, the equation for  is retained, but the turbulent viscosity is obtained from

 where the length scale is given as  [3]. The turbulent vis-

cosity determined above is then smoothly blended with the high Reynolds number  obtained
in the outer region. The dissipation rate in the near wall region is also specified algebraically as

 where the length scale, , is computed using the same relation used in the specifi-

cation of the turbulent viscosity, although with a different value of the constant . A blending
function is used to ensure a smooth transition between  specified algebraically in the inner
region, and  computed via the transport equation in the outer region. The blending is of the form

(1)
where,

(2)

2) The  model

A low-Reynolds number version of the Wilcox  model [4] was employed. In particular, a

low Reynolds number correction to the turbulent viscosity, , is determined as:

, (3)

where , , , , and . A low-Reynolds

number correction is also applied to the production of  term, , as:

(4)

where  and . In terms of boundary conditions, the asymptotic value of 
at the wall is specified as:

. (5)

The value of  is determined from:

, (6)

where .

3) Reynolds stress transport model
The RST model also uses a two-layer formulation for the near wall, similar to that used for the

 model. In this case, modifications to the linear pressure-strain model follow the methodol-
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ogy given in Launder and Shima [5]. These modifications involve specification of the constants
multiplying the slow and rapid pressure strain terms, and the wall-reflection term, in terms of
Reynolds stress invariants and the turbulent Reynolds number. Diffusive transport is modeled
using a scalar turbulent diffusivity [6], given as:

. (7)

4) Spalart-Allmaras
The Spalart-Allmaras model [7] solves a transport equation for a variable that is a modified form
of the turbulent kinematic viscosity. For the results presented, the deformation tensor, S, appear-
ing in the production term follows the original model proposed by Spalart and Allmaras, which is

based on the magnitude of the vorticity , where  is the mean rate-of-rotation

tensor. Fluent also incorporates a modified definition of  which includes measures of both rota-
tion and strain tensors in its definition; however, this modification was not used.

5) Shear Stress Transport
Fluent provides a low-Reynolds number version of the SST model, which was employed for the
results presented. In particular, the turbulent viscosity was determined as:

(8)

where  is as defined for the  model and . In addition, the turbulent
Prandtl numbers are defined as:

(9)

(10)

where  and  are blending functions. In addition,  and  are constant inner and outer

turbulent Prandtl numbers, respectively. (Similarly for  and .)

Implementation
The inlet u-velocity boundary condition was specified using the experimental profile available on
the web site. The v-velocity was set to zero. Turbulence quantities were derived from the approxi-
mate inlet turbulence intensity (I) of 0.09% (given on web site) and a turbulence length scale (l)
which was defined as  (where  is the boundary layer thickness at the inlet). In partic-

ular, the inlet turbulence kinetic energy was then set to  where  is the mean flow

velocity. The dissipation rate was computed as . For the Spalart-Allmaras model,
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the inlet modified viscosity was specified as . When implementing the  model,

the inlet specific dissipation rate was computed from . Finally, for the RST

model the inlet Reynolds stresses were specified as  and , where 
was computed as described above. In all cases, zero normal derivative boundary conditions were
used at the outflow plane. No-slip conditions were implemented on both the upper and lower
walls. The model-specific approaches to implementing wall boundary conditions were described
in the section on Model Description. (Slip wall conditions were also used on the upper wall, with
little change in the resulting solutions. However, the results presented are for the no-slip condi-
tions.)

Solutions were computed on two different grids, neither of which were those provided on 
the web site. The coarser grid consisted of 38,720 quadrilateral cells within the channel; the finer 
grid consisted of 85,760 cells. Grid points were clustered toward the wall so that in all cases 

 for the lower wall adjacent cells. This was achieved by specifying the distance of the 
first grid point above the lower wall as . The grid spacing along the upper wall 

was defined such that , so that wall functions were used. For the suction case, the suction 
chamber was included in the model and contained 2,169 tetrahedral cells. No grid refinement was 
performed within the suction chamber. The grids (either fine or coarse) within the channel section 
were identical for both the no-suction and suction cases. A section of the finer grid in the region of 
the suction slot is shown in Fig. 1.
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Figure 1. Mesh for Case 3 with flow control in the region of the suction slot. The
grid consists of 85,760 quadrilateral cells in the channel region, and 2,169 tetra-
hedral cells in the suction chamber.
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Introduction 
 
A numerical procedure has been developed for the analysis of unsteady flows within the framework of 
active control. Computations have been performed for flows past airfoils, wings and engines, ranging 
from nearly static ambient conditions and up to transonic freestream velocities. The analysis tool has been 
extensively used to develop new and practical flow control approaches. Some of these applications 
include vortex control (by reducing core strength or by introduction of perturbations to destabilize the 
vortex) and separation control to enhance high lift performance over a wide range of flow conditions. 
 

Solution Methodology 
 
The numerical tool is a modified OVERFLOW code originally developed by NASA [1]. Overflow uses 
the Reynolds Averaged Navier Stokes formulation in conjunction with field turbulence models. A special 
module has been used for applying the time-varying boundary conditions. Various signal shapes can be 
used in conjunction with arbitrary stagnation properties for the general description of the jet. 
  
 

Implementation and Case Specific Details  
 
Several aspects of computations are described bellow. 
 
Grid: The point-match grid provided by the workshop organizers has been used for these simulations with 
a slight modification. A narrow region of grid overlap has been introduced by extending the grid of the 
actuator into the wind-tunnel channel grid. 
 
Turbulence models: SA and SST models have been used. Results in terms of pressure distributions and 
off surface streamwise velocity were very similar. 
 
Boundary conditions: The program uses the mass flow rate, area and the stagnation pressure and 
temperature to define the velocity across the boundary. The orientation of the flux vector can also be 
prescribed and jet pulsation is obtained from the forcing frequency. General signal shapes ranging from 
sinusoidal to step-function are defined by a set of analytical functions. A sine wave representation of the 
jet is being employed in the oscillatory case.   
 
Time steps: The time-accurate calculation for the pulsed jet case uses 800 steps per cycle. The calculation 
starts with a steady-state solution obtained for the flow in the absence of any excitation. Asymptotic 
quasi-state is achieved after approximately 20 cycles based on the normal force on the bump.   
 
With respect to the pulsating actuation case it is instructive do discuss the issue of flow separation and 
reattachment. Fig. 1 shows the off-surface streamwise component of the velocity along the bump. The 
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instantaneous distributions at equal time intervals over one activation period (0.00722 seconds) show the 
transitory nature of the separation bubble. The onset of flow separation is directly affected by the 
intermittent ejection and suction at the orifice and the entrainment of the surrounding fluid. The size of 
the separation region and the movement of the reattachment point are being influenced by the oncoming 
flow and the impact occurs on a larger scale. 
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Figure 1: Extent of flow separation on the bump based on instantaneous off-surface 
streamwise component of the velocity (pulsed excitation case) 
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Introduction 
The aim of this work is to investigate the use of a boundary condition for the simulation of flows 
controlled by steady-unsteady mass injection/suction devices. These actuators usually consist of a 
deforming membrane oscillating inside a cavity. The simulation of the whole cavity would require a 
very complicated and time-consuming moving-mesh calculation. Therefore the use of a boundary 
condition applied at the cavity exit, the interface between the external and the internal domain, is an 
attractive strategy. This work is a first step towards investigating the limits and the benefits of the 
approach. 
Results obtained by two unsteady RANS codes, the CIRA U-ZEN code, and FLUENT, a  
commercial CFD code, are reported for the flow around a two-dimensional bump. Several 
turbulence models are employed including one-, two- and four-equation models. The flow control is 
obtained via suction and it has been computed using two boundary conditions, corresponding to a 
top-hat distribution on the wall and to an inclined jet. The results have been compared with the 
experimental data and numerical computations including the whole cavity.  

 
Computational Codes 
U-ZEN 
The CIRA U-Zen code solves the compressible RANS equations around complex aeronautical 
configurations using multiblock structured grids. The numerical discretization is based on a second 
order- cell centered finite volume method  with explicit (fourth order)  artificial dissipation. The 
unsteady procedure is based on the dual time stepping method where a pseudo steady-state problem 
is solved at each time step. Conventional convergence accelerators, including geometrical multigrid  
and residual smoothing, in the dual integration are used. Several turbulence models are available in U-

ZEN [1]: for the numerical simulations presented in this work the Myong and Kasagi k  [2], and 

the SST Menter k-   [3] turbulence model are used. 

 
FLUENT 
FLUENT is a commercial CFD code that solves the RANS equations on hybrid unstructured grids. 
It uses a second-order upwind discretization based on the SIMPLE pressure-velocity coupling and 
the formulation can accommodate compressible flows. Dual time stepping is used to obtain time 
accurate simulations and an algebraic multigrid technique is used to accelerate convergence within 
each time step. A multitude of turbulence models and variants are available in Fluent. In this work 
the Spalart Allmaras, SA, [4] model and Durbin�s v2-f four-equation model [5] are used. The v2-f model 
was implemented in FLUENT using the User Subroutines [6]. 

 
Flow Simulations 
Basemodel 
The basemodel case has been studied as a two-dimensional flow. Several computational grids and 
turbulence models have been used. The aim is the evaluation of the accuracy of the predictions in 
terms of grid and inflow and outflow conditions. The domain extends for 2.14c upstream and 4c 
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downstream the hump. The height is 0.91c. The external boundary conditions are specified as 
follows: 
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upper wall       ( 3) wallslip 

lower wall  wallslipno        ( 4) 

U-ZEN computations are carried out using the available grid on the CFDVAL2004 web site, (by 

C.Rumsey, GRID1) and the k-   and the k-  turbulence models. The computation with the k-   
model has been repeated with a second grid (again available on CFDVAL2004 web site, supplied by 
C. Marongiu, GRID2). These three tests on the base model configuration have been performed with 
a turbulence level intensity equal to 0.09%. A fourth test has been performed imposing a kinetic 
energy profile together the condition expressed in (1), at the inflow section, derived by the limiting 
values assumed by the velocity fluctuations at the end of the viscous sublayer in a fully-developed 
turbulent boundary layer [7]:   

 

'57.0'

'5.0'

uv

uw
      ( 5)  

 
where u� is known by the experiments. Globally, U-ZEN has given similar results between the two 
grids, under the same boundary conditions, showing a strong sensibility to the inflow conditions. In 
fact, a remarkable difference of the case with the assigned k-profile can be seen especially in the 
boundary layer. The pressure coefficient on the hump is well predicted in the expansion zone, but 
after the separation, the results are generally inaccurate with a strong dependency on the turbulent 
model.  
The FLUENT  simulations have been carried out using the same grid used before (GRID1) with and 
without the cavity. The boundary conditions used are similar to what explained before, the only 
difference regards the treatment of turbulent quantities. For the SA model a constant turbulent 
viscosity ratio (equal to 10) is specified, whereas for the four equation model the same values used 

for the k-   model have been employed. The results are generally similar to the ones obtained with U-
ZEN in the expansion zone, with a slight overprediction of the pressure peak at the leading edge of 
the bump (this was found to be extremely sensitive to the inlet and the upper wall boundary 
conditions). The separation zone is strongly influenced by the turbulence model, but both appear to 
underpredict the pressure level measured in the experiments. In particular, the v2-f  model predicts a 

3.13.2



lower level of the pressure but a better overall recovery in the reattachment region downstream of 
the bump. 
 

Steady suction case.  
For these simulations only the k-  turbulence model has been used in U-ZEN and the SA model in 
FLUENT. The suction condition has been applied at the slot exit. The mass flow rate is constant 
along every section of the slot, while the momentum coefficient depends explicitly on the velocity 
magnitude. The simplest formulation used is to consider a top-hat velocity distribution applied along 
the d/c segment (see figure 1). The momentum coefficient will be scaled as follows: 
 

d

h
hCdC       ( 6) 

 
where the superscript ( )+ refers to the dimensionless quantities. Considering the figure 1, it is clear 
that the jet does not exit along the wall normal, but is inclined with a certain angle depending on the 
lateral wall inclinations and on the interaction with the external flow. Therefore, the problem of 
definition of a tangential velocity component arises. The second formulation consists in introducing a  

realistic direction by adding a tangential component that contributes to the C   and not to the mass 
flow. Assuming a vector notation, the effect of the jet angle can be considered as follows :  

  

2tank

tkUUUUU JnJnJtJnJ    ( 7) 
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12
2       ( 8)  

where   is the angle between the wall normal and the jet direction, JnU  and JtU  are respectively the 

normal and the tangential components of JU . Indeed, to take into account the stagnation region at 

the beginning of the orifice, (see figure 2), a value of d+ less than the geometrical one can be 
considered. In this simulation the following values have been used: 
 

    = 43.9 ° 
 d+  = 3.5 10-3  
 

In the figure 4, 5 and 6, the u-field component of the simulations with the whole cavity (FLUENT) , 
the wall normal jet, and the inclined one (U-ZEN) , can be seen. An improvement of the results has 
been obtained with the inclined model, although more accurate models could be defined. In fact, the 
treatment of the turbulent variables at the slot exit, here considered as a solid wall, is an open matter 
that could affect the solution quality.     

 

Conclusions 
From the analysis of the configuration without control, a strong sensitivity of the solution to the 
inflow and outflow conditions has been found. It�s worth to note that the upper surface has been 
considered as a solid wall with a slip boundary condition, and it is not possible to exclude an 
influence of the upper boundary layer especially in the separated region (blockage effect, [8]) . In the 
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suction case, the computations simulating the whole cavity (FLUENT) and those applying the 
boundary condition at the slot exit (U-ZEN) are in a good agreement with the experimental data 
especially if the effect of the jet direction is taken into account. This is accomplished by adding a 
tangential component; the formulation of this boundary still does not include any modification of the 
turbulent variables. This would be the scope of future investigations. 

 

d/c = 4.5 10-3

h/c = 1.87 10-3

 
 

Figure 1- Slot exit detail 
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Figure 2  Cavity simulation. (Fluent)  Detail on the 
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Figure 3 u-contours. Suction case. Experimental data
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Figure 4 u-contours. Suction case. Cavity simulation 
(FLUENT) 
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Figure 5 u-contours. Suction case. Wall normal jet.  

(U-ZEN) 
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Figure 6 u-contours. Suction case. Inclined jet. 

(U-ZEN) 
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CASE 3: SYNTHETIC JET
3D STEADY HALF-DOMAIN COMPUTATION USING CFD++
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Introduction

This paper briefly explains the details of one of our approaches to Case 3 of the Langley Research Center
Workshop on synthetic jets. Here we have performed a three-dimensional simulation of half of the domain.
For the suction case, we have prescribed the outflow pressure in the synthetic jet slot. This pressure was
then adjusted to produce the appropriate mass flow through the slot.

Solution Methodology

This work was performed using CFD++, a Navier-Stokes solver for compressible and incompressible flow.
CFD++ features a second order Total Variation Diminishing (TVD) discretization based on a multi-dimen-
sional interpolation framework, which is also utilized for the viscous terms. A pre-conditioned HLLC
(Harten-Lax-van Leer with Contact wave) Riemann solver is used to provide proper signal propagation
physics while preserving positivity and satisfying the entropy condition. Further details regarding the nu-
merical methodology can be found in Chakravarthy et al [2], Peroomian et al [4, 5], and Batten et al [1].

The simulations were computed with Metacomp’s 2-equation cubic � - � RANS turbulence model, which
is discussed in Palaniswamy et al [3].

Implementation and Case Specific Details

The grid was generated from the supplied geometry, and consists of 2.47 million hexahedral cells. The
portion of the grid near the airfoil is shown in Figure 1 to give an idea of the stretching used. The grid was
tightly stretched towards the bottom of the tunnel to directly resolve the boundary layer on the airfoil, but
less tightly stretched at other walls. The domain extent in the streamwise direction was ���6���c�¡ £¢¥¤§¦¨ 
����©§� . The shorter domain was chosen because CFD++ allows the user to impose a fully-developed Musker
boundary layer profile as a boundary condition, and the upper-wall boundary layer thickness was specified
at ¢¥¤§¦�ª«���6���c� . The lower boundary layer thickness for the Musker profile was estimated using the splitter
plate length.

The outflow condition was set to a characteristics-based inflow/outflow condition. The equations were
solved to the wall at the airfoil surface and lower tunnel wall, and wall functions were used for all other
walls.

The flow in the slot was modeled, and for the suction case, a pressure-based inflow/outflow boundary
condition was used at the bottom of the slot. This BC imposes the pressure in the case of outflow, and
determines the state from the interior velocity in the case of inflow. Initially, the pressure was set to an
arbitrary value somewhat less than the cavity pressure which developed in the no-suction case. This pressure
was then adjusted to achieve the specified mass flux of 0.01518 kg/s through the slot (which corresponds to
0.00759 kg/s through the half-slot simulated here). This mass flux was ultimately achieved by setting the
boundary pressure to 2100 Pa lower than the freestream, or 99.225 kPa.
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Introduction 
 
The flow over the two-dimensional hump model is computed by solving the RANS equations 
with k-ω (SST) model.  

Solution Methodology 
 
The governing equations, the flow equations and the turbulent equations, are solved using the 5th 
order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and 
using explicit third order total-variation-diminishing (TVD)  Runge-Kutta scheme for time 
integration. The WENO and the TVD methods and the formulas are explained in [1] and the 
application of ENO method to N-S equations is given in  [2].  The solution method implemented 
in this computation is described in detail in [3]. 
 
Model used 
 
Standard k-ω (SST) model is used and the equations and the model coefficients are described in 
[4, 5, 6]. 
 
Implementation and Details 
 
The computational domain extends from x/c=-10. to 4. in the streamwise direction and extends 
from the splitter plate to the upper tunnel wall in the normal direction. The leading edge of the 
splitter plate is modeled as a super ellipse with 0.25 in.  half thickness and an aspect ratio of 2. 
The leading edge is located at x/c=-5.9.  C-Type grid is used around the splitter plate and a 
rectangular grid is added upstream of the leading edge as shown in Fig. 1. This grid overlaps the 
C grid and 5th order central interpolation is used to transfer the flow variables from one grid to 
the other at the boundaries. (651*151) grid size is used around the splitter plate and the hump 
and (101*51) grid size is used in the rectangular region. 
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Figure 1: Overlapping grid near the leading edge of the splitter plate. 

 
 
Following boundary conditions are implemented at different boundaries: 
 

1. At the upper wall inviscid conditions are applied. 
∂ρ

∂y
=

∂u
∂y

=
∂E
∂y

= v = 0.        (1) 

2. At the lower wall viscous conditions are used. 
u = v = 0,
T = Tw = Tfree stream,

        (2) 

and ρ is computed from the continuity equations. 
3. From the leading edge of the splitter plate to the inflow boundary symmetric conditions 

are used. 
4. At the inflow boundary stagnation pressure, one Riemann variable and normal velocity 

v=0 are prescribed and the second Riemann variable is solved for to obtain the other flow 
quantity. 

5. At the outflow boundary the pressure is specified to obtain the required Mach number 
and characteristic-type boundary conditions are implemented similar to as described in 
[7] to obtain other flow variables. 

6. In the suction case, boundary conditions are applied on the surface of the hump across the 
suction slot. The suction slot extends from x/c=.6541 to .6584 and across the slot normal 
mass flow rate is specified to the experimental value. A suction distribution of the form  

(ρv)n = fmax sin2 π (x − xstart )
(xend − xstart )

 

 
 

 

 
       (3) 

is used. Other forms have been tried and all of them yield the same results for a fixed 
total suction rate. The other flow quantities are obtained using the characteristic type 
boundary conditions [7]. 

  
Following boundary conditions are implemented for the turbulent quantities at different 
boundaries. 
 

1. At the inflow boundary small values are prescribed for k and µT . 
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k
U∞

2 =10−7,

µT

µ∞

= .009.
         (4) 

2. At the outflow boundary k and ω are solved for from the governing equations. Higher 
order extrapolation condition is also tried and it gives the same results. 

3. At the lower viscous wall k=0 condition is used and following exact boundary condition 
is derived for ω. 

4. In the suction case, across the suction slot linear extrapolation is used to obtain the 
turbulent quantities on the surface.  

 
Since the variable ω becomes singular near a viscous wall, in practice a large approximate value 
is prescribed at the wall. 

ωwall =
60µw

ρwβdw
2 ,      (5) 

 
where dw is the distance to the first grid point from the wall. This is an approximate boundary 
condition and when it is implemented in the higher order scheme, oscillations and convergence 
problems are encountered and the following exact condition is derived for ωwall . By realizing 

that 1
y 2

 

 
 

 

 
  type singularity for the variable ω arises because of the balance between the 

dissipation term and the viscous diffusion term in the ω equation, the singularity is removed by 
rewriting the variable ω as 

               ω =
C
yn

2 ω1,       (6) 

where yn is the normal distance to the wall, C is a constant and ω1 is the new variable which is 
now regular near the wall. When this is substituted into the ω equation the following equation is 
obtained for ω1, which is similar to the ω equation except for the source term. 
 

∂

∂t
(ρω1) +

∂

∂x j

(ρu jω1) = γρΩ2yn
2 Re +

1
Re

∂

∂x j

µ +
µT

σ w

 

 
 

 

 
 
∂ω1

∂x j

 

 
 

 

 
 

−
ω1

Re
1
yn

2 βρω1 − 6 µ +
µT

σ w

 

 
 

 

 
 
∂yn

∂x j

 

 
  

 

 
  

2 

 

 
 

 

 

 
 

−
2

yn Re

 

 
 

 

 
 µ +

µT

σ w

 

 
 

 

 
 
∂ω1

∂x j

∂yn

∂x j

+
∂

∂x j

µ +
µT

σ w

 

 
 

 

 
 ω1

∂yn

∂x j

 
 
 

 
 
 

 

 
 
 

 

 
 
 

+
2
yn

u jρω1
∂yn

∂x j

+ 2(1− F1)σω 2
ρ

ω1

∂k
∂x j

Re yn
∂ω1

∂x j

yn − 2
∂yn

∂x j

ω1

 

 
  

 

 
  .

  (7) 
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The value of ω1 at the wall becomes 

ω1wall =
6µ

βρ

∂yn

∂x j

 

 
  

 

 
  

2

.      (8) 

 
Here the variable ω is nondimensionalised by  
 

ω =
ω*

U0
2

ν 0

 

 
 

 

 
 

 and C =
1

Re2 .     (9) 

 
Hence the procedure is to use the ω1 equation for the first few points near the wall and switch to 
the ω equation away from the wall. In these computations ω1 equation is solved for the first ten 
points near the wall. Figure 2 shows the distribution of k, ω and ω1 near the wall and it is seen 
that this technique resolves the viscous layer smoothly even though ω is infinite at the wall. 
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Figure 2: Variation of k, ω and ω1 near the wall at x/c=0.4. 

 
Figure 3 shows the contours of the U velocity near the leading edge region and for the entire 
computational domain. Near the leading edge region the flow separates and forms a small 
separation bubble. In the no flow case, the solution converged for the flow equations and the 
turbulent equations very well. In the suction case, the maximum residual in the ω equation near 
the suction slot edges converged only by three orders. This may be due to the boundary 
conditions used for the turbulent quantities near the suction slot. 
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Figure 3: Contours of U velocity near the leading edge and over the hump. 
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